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Theoretical Model Studies of Drug Absorption 
and Transport in the Gastrointestinal Tract I 

AKIRA SUZUKI, W. I. HIGUCHI, and N. F. H. HO 

Abstract 0 The simultaneous chemical equilibria and mass transfer 
of basic and acidic drugs through a two-phase compartment model 
were theoretically investigated. The model consisted of a well- 
stirred bulk aqueous phase, an aqueous diffusion layer, and a 
lipid barrier for perfect and imperfect sink cases. The nonsteady 
and quasi-steady-state changes in the concentration-distance dis- 
tributions in the lipid phase were studied. The rate of change of 
the total drug concentration in the bulk aqueous phase was de- 
scribed in the general form of a first-order equation useful for the 
evaluation of experiments. A limiting steady-state relationship in- 
volving the transport rate with the partition coefficient, pH at the 
aqueous-lipid interface, dissociation constant of the drug, aqueous 
and lipid diffusion coefficients, and thickness of the diffusion layer 
was derived. Increasing the agitation rate in the aqueous phase 
markedly affects the pH profiles for the rate of transport. The pH- 
partition theory is shown to be a limiting case of the more general 
approach presented. 

Keyphrases Drug absorption, transport-theoretical model 
Model, two-phase compartment-theoretical investigation 
Chemical equilibria, mass transfer-two-phase compartment 
model 0 Agitation rate effect-rate transport pH profiles 

The increasing interest in the mechanistic understand- 
ing rather than in only a mathematical representation of 
drug transport and absorption phenomena should dic- 
tate systematic physical model analyses of various in 
uitro situations. Thus, detailed theoretical considerations 
of diffusion and equilibria involving multibarrier sys- 
tems and the carrying out of appropriate model experi- 
ments are necessary for the isolation of the important 
in uiuo factors. 

Recent investigations (1-4) in these laboratories have 
been devoted to the physical model approach to a num- 
ber of situations in this regard. The present paper is 
concerned with the problem of treating the time de- 
pendency and the pH-buffer dependency for the trans- 
port of basic and acidic solutes into and across lipoidal 
barriers. It is, to some extent, an extension of the works 
of Howard et al. (3) and Stehle (4) and should be useful 
in the understanding of gastrointestinal and buccal 
absorption problems. In the accompanying paper ( 5 ) ,  
the techniques developed here are applied to some of the 

data on in situ drug absorption published by Koizumi 
et al. (6 ,  7). 

THEORY 

General Description of the Model-The simultaneous mass 
transfer and chemical equilibrium reactions in a system consisting 
of two homogeneous phases will follow the one-dimensional 
model in Fig. 1.  The bulk aqueous phase is well stirred and consists 
of a basic drug and buffer. At x 2 - h, 

(Eq. 1) 

(Eq. 2) 

(TR1-h = (R)--h + (RH'1-n 

(TB)-h = (B-1-h -I- (HB1-h 

where (TR) is the total drug concentration of R and RH+ species 
and (TB) is the total buffer concentration of B- and HB species. 
It is assumed that electrical neutrality holds everywhere in the 
aqueous phase. Consequently, at x 5 0, 

(H+) + (RH+) + (Naf) - (OH-) - (B-) = 0 (Eq. 3) 
where (Na+) is the cation concentration derived from the buffer. 
It is further assumed that the following equilibrium reactions are 
instantaneous, 

(H+)(OH-) = K, (Eq. 4c) 
where &.R, K o l ~ ~ ,  and K, are the dissociation constants of drug, 
buffer, and water, respectively. 

Under the assumption of quasi-steady-state conditions existing 
within the aqueous diffusion layer, the total flux of the drug to the 
water-lipid interface is expressed by the equation 

( - h  5 x 5 -0) 
where G is the total flux of the drug and DRH and DR are the dif- 
fusion coefficients ; upon integration, the solution is 

Gh = DRH (RH+)-h + DR(R)-~ - DRH (RH+)-o - 
DR(R)-o (Eq. 6) 

In an analogous procedure for the buffer species, 

DHB(HB)-A + DB(B-)-~ - DHB(HB)--o - DB(B-)-o = 0 (Eq. 7) 
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AQ. 

Figure 1-Two-phase diffusion model consisting of a bulk aqueous 
phase, aqueous diffusion layer, and a lipid phase. Concentration dis- 
tribution of total drug species is governed by steady-state rate into 
the diffusion layer, and concentration of the diffusing nonionized 
drug in the lipid phase is governed by nonsteady-state rate determined 
by numerical finite-difference methods. 

D. 1. LI I! 

in which case the total flux of the buffer is zero. 
If only the nonprotonated drug molecule is capable of diffusing 

into the lipid phase, the equilibrium assumed to  be established in- 
stantaneously at the aqueous-lipid interface is expressed by the 
partition coefficient, 

AQ. 

where P is the partition coefficient; (R) is the concentration of the 
nonionized drug; and the subscripts, -0 and +0, refer to  the 
aqueous and lipid side of the interface, respectively. The continuity 
of flow through the interface is given by 

0. 1. LIP 

where D R , ~ ~ ,  is the diffusion coefficient of RIin lipid. In this model 
the flux of the total drug species in the aqueous diffusion layer is 
taken to be the same as the flux of the nonionized drug from the 
interface to the lipid phase. Within the lipid, Fick's second law 
applies: 

( x  > 0) 

and at x = L two extreme boundary conditions can exist, that is, 
(a) for the impermeable boundary, 

(ip) = o  
z =L 

(Eq. l l a )  

(b) for the perfect sink, 

(R)==L = 0 (Eq. l l b )  

Changes in the Concentration-Distance Distribution in the Aqueous 
and Lipid Phases with Tim-The simultaneous time change of the 
total drug concentration-distance distribution in the aqueous phase 
in which steady-state conditions are assumed and that for the dif- 
fusing basic drug molecule in the lipid phase in which nonsteady- 
state conditions exist cannot be solved analytically. Numerical 
methods and the utilization of a high-speed computer are necessary. 

In using the finite-difference method (8), the lipid compartment 
is divided into a number of cells of equal intervals as shown in Fig. 
1.  Accordingly, the concentration of drug in the bulk aqueous phase 
and each cell in the lipid phase and at the interface can be calculated 
by solving the following set of differential equations: 

Figure 2-Model used to estimate F(t) by linear approximation of 
the concentration-distance curves in the lipid phase. Key: A, im- 
permeable boundary case: and B, perfect-sink case. 

( i = 2 , 3 , 4 . .  . n - 1 )  

and at x = L, for the impermeable boundary or no-sink case, 

and for the perfect-sink case, 

where A is the surface area, V is the volume of the bulk aqueous 
phase, (Ri) is the concentration of neutral drug in the ith cell, 
Ax is the length of each cell, n is the total number of cells, and 
the other terms are defined as before. 

Since the concentration of drug species at the various aqueous 
boundaries is dependent upon pH, the hydrogen-ion concentration 
must be known. From Eqs. 1 through 4 the hydrogen-ion concentra- 
tion in the bulk phase is given by 

(H% + ( K ~ , R  + K~.HB + (TR1-h + (Na+)-h) (H+)% f 
([(TR)-h -k K ~ . R  - (TB)-&,HB - 

( K ~ , R  + K,.HB)(Na+)-nK,)(H+)t, - 
(Ka.HB(TB)-h + (&.R + K ~ . H B K ~  f 

K,.RKG,HB(Na+)-h )(H+)-h - 

(Eq. 16) 

K ~ . R K ~ , H B K ~  = 0 

Table I-Numerical Dimensions of Constants and Initial 
Drug and Buffer Concentrations Used for Computation 

~ 

V = 1 0 ~ m . ~  A = 10 cm.z h = cm. 
K a . ~  = 10-8 D = cm.2 sec.-1 for all 

Initial concentrations: (TB)-h = M 
diffusion coefficients 

(TR)-~ = 1 0 - 4  M 
No-Sink Case Perfect-Sink Case 

L 10- l  cm. 5 X 10-2cm. 
(Na+)-h 0 '/dTB)-h 
P 1,100 100 
PLHB 4, 6, 8, 10, 12 4, 6, 8, 10 

~~ ~ 
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Figure 3-Time-dependent concentration distribution curves of total 
drug species (TR) in the aqueous phase and the nonproionated drug 
( R )  in the oil phase for the no-sink case: ( A )  initial bulk aqueous 
p H  = 3.05 andpartition coeficient P = 100; ( B )  pH = 8.82, P = 
lOO;(C)pH = 8.82,P = 1.0. 

Table "--Change in the Bulk and Surface pH with Time for the 
No-Sink Case in a Low Buffer Capacity System with P = 100 

-----Initial- ---After 500 SK- 

LHB PH-I PH-o PH-A PH-o 

10-6 3.05 3.05 3.05 3.05 
10-8 6.01 5.71 5.98 5.95 
10-10 7.79 6.84 7.67 7.33 
10-12 8.82 7.70 8.71 8.22 

The equation for the hydrogen-ion concentration at the interface 
is derived from Eqs. 3,4, and 6-9; thus, 

( W ~ O  + [ P  + YT + + Y(N~+)-&H+)?~ + 
Ma + B)T - yKW - YS + (YV + P)(N~+)-oI(H+)% - (Eq. 17) 

KP + rv)L - P S  + PS(N~+)-OI(H+)-O - 
BqKw = 0 

where 

P = D R + T  2hPD~.,ii 

Y = DRH/Ka,R 
&.HB 6 = -  DB [DB(B-)-h + DHB(HB)-~] 

q=- K~,HBDB 
DHB 

Here, it is assumed that (Na+)-n = (Na+)-o. Finally, the concentra- 
tion of the diffusing specie at the aqueous side of the interface, i.e. 
(R)-o, is expressed by 

Rate of Change of the Total Concentration of Drug in the Bulk 
Aqueous Phase-To relate the theory of the diffusion model to the 
usual treatment of experimental data, i.e., the rate of change of the 
total drug concentration in the bulk aqueous phase, it is useful to  
rewrite Eq. 12 in the following manner, 

where F(t) is defined as 

F(t) = GIGmBx. 
and 

Equation 20 is the ratio of the actual flux to the maximum flux 
which takes place when all of the drug species in the bulk aqueous 
phase is nonprotonated and the concentration of R at the interface 
is zero. By performing the integration, Eq. 19 becomes 

(0 < F(t) I 1) 
and by utilizing the mean-value theorem to evaluate the integral, 

(0 5 Q 5 0 
If F(+) is relatively invariant with a, an apparent first-order de- 
crease in the drug concentration with time will be observed. In 
general, the slope of In (TR)-n versus t plots is 
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Figure 4-First-order plot of the change in the total drug concentra- 
tion in the bulk aqueous phase with rime. No-sink case for different 
initial bulk aqueous pH.  

Approximation of the Function F(t)-Since the function F(t) 
influences the apparent first-order rate constant, the elucidation of 
the nature of the function in terms of the partition coefficient, pH 
at the interface, diffusion coefficients, and thickness of the diffusion 
layer would lead to meaningful physical interpretation. For this 
purpose, an approximation of F(t) is derived for two cases, per- 
fect-sink and no-sink situations. 

No-Sink Case-The analysis is based on the model for the con- 
centration-distance distribution changes with time in Fig. 2A. It 
assumes a linear approximation of the nonsteady-state concentra- 
tion profile of R at time t in the lipid phase. From Eqs. 8 and 9, 

D ~ , ~ i i  P(R)-o 
A1 G = .  

where A1 is the distance from the interface to  the point where 
(R)+o is zero and changes with time such that 0 < A1 > L. Further- 
more, assuming that the flux G has not changed appreciably during 
the period needed to build up the concentration distribution in the 
lipid phase, the total amount of drug transported through the 
interface is approximated by 

l' G dt = 1' (R),ii dx (Eq. 2 w  

Thus, 

Gt = '/Z(R)-aPAl (Eq. 26b) 

and it follows from Eqs. 25 and 26b that 

A1 = (2D~.,iif)'/2 m. 27) 
Solving for (R)-o with the aid of Eqs. 6 and 25 and DRH = DR, 

(Eq. 28) (TR1-h 
1 + [(H+)-o]/(KG.R) + (hDR,oi&')/(A1 DR) (R1-o = 

and with Eq. 27, 

(Rko = 

It is convenient to define a new function f ( t )  as the approximation 
of F(t). By means of Eqs. 1, 4, 6, 20, and 21, the function can be 
simply expressed by 

(Eq. 29) (TR)-n 
1 + [(H+)-ol/(Ka.~) f (~DR.,~IP)/(DR~/~DR,.~~~) 

f ( t )  - F(t) = G/Gmax. = 

{ 1 + [(H+)-oI/(K..R))(R)-o 30) 1 -  
(TR1-h 

8 

x 

0 0 0 0 , 8  
- 0 . .  

@ Q & ?  

1 

0 200 400 600 800 1000 
TIME, sec. 

Figure 5-Change in the diffusion efficiency coefficient with time 
for the no-sink case. The numerically calculated coefficient F(t) by 
Eq. 20 is compared with the approximation f(t) by Eq. 31. 

and the substitution of Eq. 29 leads to 

where 

Therefore, in this case of an impermeable boundary in the lipid 
phase, the time-dependent nature of the function f( t)  makes it 
evident that first-order diffusion kinetics are not applicable. 

Perfect-Sink Case-In this situation the diffusion of the drug 
can be divided into two stages (Fig. 2B). The first stage is the period 
of nonsteady-state rate in the lipid phase leading to the second 
stage of quasi-steady-state conditions. In other words, F(t) will 
eventually be constant (time independent) after an initial lag 
period. 

In the nonsteady-state period the approximate function f ( t )  
given by Eqs. 31 and 32 can be applied. From Eq. 27, with A1  = 
L always, the time lag is 

33) 

where 7 is the lag time, and L is the thickness of the lipid 
phase. 
In the steady-state period, Eq. 25 can be rewritten as 

D R , ~ ( R ) - O  
L G =  

After the substitution of Eqs. 21, 28, and 34 into 20, the function' 
f(T) takes the same form as Eq. 31; that is,2 

where, in this case, 

Therefore, in the perfect-sink case, a log (TR)+ versus t plot should 
be linear after a lag period. 

1 Note that f ( t )  is replaced by f(T) since the function is time-inde- 
pendent in the steady-state period for the perfect-sink case. 

2While this theoretical treatment is based on an amine dru the 
following equation can also be derived in an analogous manner k r  an 
acidic drug, like a barbiturate, 

where K,,.R is the dissociation constant of the acidic drug and T is 
either Eq. 32 or 36, depending upon the perfect- or no-sink case. 
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Figure 6-Time-dependent concentration distribution profiles in 
aqueous and lipid phases for the perfect-sink case. Partition coefficient 
P = 100. ( A )  Dissociation constant of bufler, K,.HB = I c e .  (B)  
K % , H B  = (C) K,.HB = Sodium-ion concentration was one- 
half of the total bufler concentration always. 

CAJXULATIONS 

Computations were carried out for a range of parameters with 
the aid of the IBM 360/67 digital computer. Table I gives the di- 
mensions of the constants and initial drug and buffer concentra- 
tions. The dissociation constant of the buffer and partition co- 
efficient were varied. The detailed method of computation is given 
in the Appendix. 

RESULTS AND DISCUSSION 

In this section the interphase diffusional transport of an amine 
drug is analyzed for a wide range of pH and partition coefficients, 
other parameters being constant. It is discussed in relation to  two 
extreme situations, the no-sink (impermeable lipid boundary at 
x = L) and the perfect-sink cases. In contrast to  the later, the 
former case simulates the situation of retarded drug absorption in a 
simple way when the rate-determining step is due to one kind of 
interfacial barrier, like an impermeable membrane. There are also 
intermediate situations, i.e., 

(Eq. 37) 

where C is some nonzero value. 
No-Sink Case-Typical changes of drug concentration-distance 

distribution curves in the aqueous and lipid phases with time are 
shown in Fig. 3. Steady-state and nonsteady-state conditions prevail 



Table 111-The Initial Slope K ,  and F(t) Values for the No-Sink Case with P = 100 
~~ ~ 

PH-h 
LHB a t r  = 0 KU F(@) R r )  f(t) 

10-4 3.05 -0 N O  0.121 x 1 0 - 3  0.157 X 
10-8 6.01 0.123 X 0.123 0.0973 0.1096 
10-10 7.79 0.736 X 0.736 0.7163 0.6969 
10-12 8.82 0.915 X 10P 0.915 0.9053 0.8946 

Table IV-Comparison of the Functionf(T) during the Steady-State Period and the Lag Time T~ with Theory for the 
Perfect-Sink Case in a Strong Buffer System 

-Initial- - -Steady-State -Lag Time, sec.- 
K ~ . H B  pH-a PH-o F(T) f (TI 7 robs.* 

10-4 4.03 4.03 2.16 x 10-3 2 .2  x 10-3 125 100 
10-6 6.02 6.01 0.167 0.17 125 100 
10-8 8.01 8.00 0.902 0.91 125 100-200 
10- 10 9.98 9.98 0.948 0.95 125 100-200 

a r calculated by Eq. 33. b Tobs .  estimated from Fig. 9. 

in the respective diffusion layer and lipid phase. Because of the 
impermeable barrier, a t  sufficiently long times there will be a 
concentration buildup in the lipid that approaches some equilibrium 
concentration as determined by the partition coefficient. 

Upon comparing Figs. 3A and B, the pH effect on the distribu- 
tion profiles is evident. When PK~,HB = 4 [and the bulk pH N 3 
with (Na+) = 01, the ratio of the initial bulk aqueous concentration 
of nonprotonated drug to  the total concentration is only 1.11 X 

This results in a relatively small concentration gradient in 
the diffusion layer and, consequently, in a small amount of non- 
protonated drug being transported into the lipid phase, even though 
the partition coefficient is favorable. On the other hand, when 
K a , a ~  = (and the bulk pH - 8.8), the initial (R)-h/(TR)-h 
is 0.887. Here the flux in the diffusion layer and the amount trans- 
ported into the lipid are large. In Figs. 3A and C the results indicate 
that the rate of diffusion is influenced more by the amount of the 
free amine drug available for transport at the interface rather than 
the partition coefficient. In this regard, the pH profile of the dif- 
fusion model should be considered. Based on Eqs. 16 and l7,Table 11 
shows the pH of the bulk aqueous phase and the interface for various 
K a . ~ ~  values and at different times with P = 100. Since (Na+) = 0, 
the buffer capacity is very low. It is found that pH-,, < pH-h 
initially and can be explained by the fact that RH+ and R species, 
as well as buffer, have some flux according to the concentration 
gradient within the diffusion layer and some RH+ arriving at the 
interface dissociates into H+ and R. The pH-h will decrease in time 
and eventually will be equal to  pH-o when the diffusion rate is 
zero. 

The semilogarithmic plots of (TR)-h versus t (Fig. 4) do not show 
a true linear relationship, as expected from Eq. 22, since the slope 
Ku is time dependent. When pH-0 of the system is approximately 
equal to or greater than the pKa of the drug, the initial rate is very 
rapid; however, due to the backup drug concentration in the lipid 
later on, the rate approaches zero. In Table 111 the initial apparent 
first-order rate constant is given and the function F, determined in 
various ways for the first 250-sec. period, shows good agreement. 
F(0) was calculated by using Eq. 23 and the initial slope from Fig. 
4, F(t) by the computer-simulated transport program from the gen- 
eral Eqs. 20 and 21, andf(t) by Eqs. 31 and 32. However, in Fig. 5 
the functions F and, therefore, the rate constants are always chang- 
ing with time. That the rate constant in early period (- 500 sec.) 
from the log (TR)-h versus t plot is apparently constant with time 
can be explained by the fact that it is less sensitive to time than the 
differentially calculated K,. Also, after 500 sec., the F(t) and 

f ( t )  tend to diverge. Since the derivation off(t) is based on a linear 
approximation of the flux in the lipid (see Fig. 2A), the function 
f(t) becomes a poorer approximation of F(t)  when backup occurs 
in the lipid compartment at the impermeable boundary. 

Perfect-Sink Case-In Fig. 6 the concentration distribution curves 
are shown for various values of K=,EB with P = 100. Nonsteady- 
state diffusion in the lipid occurs in the initial period. Later, when 

the concentration-distance profile is linear, the system is at steady 
state and the diffusional rate is first order with respect to the total 
drug concentration in the bulk aqueous phase (Fig. 7). From Fig. 8, 
which shows the time change in (TR)-a and Q, the amount of non- 
protonated drug in the sink, the lag time can be obtained by ex- 
trapolation and'also predicted by Eq. 33. The results of this perfect- 
sink case are summarized in Table IV. Because of the strong buffer 
capacity, (Na+)-h = (Na+)-o = 1/2(TB), the pH of the bulk aqueous 
phase and at the interface is nearly the same. There is good agree- 
ment between the lag time values obtained from the theory and the 
computer-simulated experiments and between the steady-state rate 
constants obtained in part from rigorous calculation by Eq. 19 and 
the approximation by Eqs. 35 and 36. Referring to Fig. 9, one can 
readily follow the course of the interphase transport by an analysis 
of f(T). The curve is characterized by a rapid change with time, 
followed by an asymptotic relationship during the steady-state 
period. As the pH is more alkaline, the functionf(T) approaches 
1 and the apparent first-order rate constant increases in magni- 
tude. 

Significance of the Function f(T) for the Perfect-Sink Case-Thus 
far, the rate-determining factors have been discussed from the 
general viewpoint of the partition coefficient and the pH at the 
interface influencing the amount of nonionized drug available 

t 
0.2 

0 250 500 750 1000 
TIME, sec. 

Figure 7-First-order change in the total drug concentration in the 
bulk aqueous phase with time. Perfect-sink case for different initial 
bulk aqueous pH. 
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for diffusion across the lipid phase. It is useful to examine the 
nature of the time-independent function f(T) by Eqs. 35 and 36 
and the steady-state rate constant K,, (Eq. 24) relative to pH-,,. 

As shown in Fig. 10, when the (pH-o - pK,) for a basic drug 
becomes increasingly positive and T is sufficiently small, say 10-6 
to lo-*, f(T) is unity in the limit. Consequently, a few selected and 
interesting cases can be pointed out. If 

limf(T) = 1, thenK, = - ~ ADR 
Vh 

P+ m 

(H+)-o 5 I(, 
h = constant 

On the other hand, if 

lim f(T) = 1, then K, - 0 

h - ,  m 

P-, m 

(Hi)-,, 5 Ka 
In both of these cases the rate-determining factor is the flux across 
the aqueous diffusion layer. These examples emphasize the im- 
portance of the aqueous diffusion layer, which is affected by the 

1.0 

fi 

0.5 

0 

\ 6 

0 500 1000 
TIME, sec 

Figure 9-Change in the diffusion egciency coefficient with time for 
theperfect-sink case. Ajier lag time, F(t) calculated is the same as 
the approximation f(t). 

Figure 10-Relationship of the pH at the aqueous-lipid interface and 
the p K  of the drug with the diffusion efficiency coefficient for various 
T,  which includes all transport parameters such as diffusion and 
partition coefficients, thickness of diffusion layer, and lipid phases. 

degree of stirring or agitation. More significantly, it shows that the 
pH-partition theory (9) is only a special case of the theory presented 
here. A very small value of D ~ . ~ i l  can also slow down the rate. In 
accordance with the pH-partition theory, the f(T) and, consequently, 
K, - 0 when the ( ~ H - O  - pKa) becomes more negative. 

Another interesting point in Fig. 10 is the shifting of thef(T) 
uersus (pH-0 - pKa) profiles with various T values. For T = 10, 
the profile approaches the dissociation curve characteristic of the 
basic drug; for other T values the profile deviates to the left of the 
dissociation curve. 

From Eq. 36 it can be seen that increasing the partition coefficient, 
increasing h, increasing D ~ , ~ i i ,  decreasing DR, or decreasing L, all 
have the effect of shifting the profile leftward away from the dissoci- 
ation curve. The effect of agitation mentioned previously is particu- 
larly noteworthy in this regard. Thus it is important for investigators 
to recognize that the degree of agitation may not only influence the 
drug-absorption rate but that it can significantly influence the rate 
versus pH profiles. Another interpretation of the curves in Fig. 10 
can be given; that is, at a constant diffusion layer thickness and a 
given rate of diffusion, the effect of a low concentration of non- 

I 1 . I t A l  I 

I x 

Scheme I-Flow diagram for the computation of concentration dis- 
tributions 
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ionized species at the interface is balanced by a high partition co- 
efficient and vice versa. All of these conclusions also apply to  
the case of acidic drugs in an analogous way. 
In the study of rat intestinal and gastric absorption of sulfon- 

amides, Koizumi et al. (6, 7) derived a first-order rate constant, 

abP K, .\/M = ___ 1 + a P  

where M is the molecular weight of the sulfonamide, K, is the 
absorption rate of the nonionized moiety, a and b are constants, 
and P is the partition coefficient. 

Equation 38 was found to be in good agreement with a large 
number of in situ experiments. It is noteworthy that the substitution 
of Eq. 35 or 35a into 24 gives 

K - - A D R . -  BP 
Vh 1 + B P  l k -  (Eq. 39) 

Both equations have the same form, although the methods of 
derivation are different. In the next paper, the results of Koizumi 
et a[. and others will be discussed and compared with a similar 
model as presented in this study but modified to simulate the gastric 
and intestinal membrane. 

APPENDIX 

Numerical Calculating Procedure-To calculate the change of 
(TR)-*, the concentration profile of R in the lipid phase with time 
and other parameters, the procedure shown in Scheme I is 
used. The input data are given in Table I. After t = 0, a series 
of calculation procedures undergo integration for each time incre- 
ment, f + At. The (TR)-h and (Ri) at time t are determined by the 
stepwise integration of Eqs. 12-15a or 156, depending upon the 
choice of the perfect-sink or no-sink case, by the Runge-Kutta 
technique for the initial period, t 5 3At, and thereafter by the pre- 
dictor-corrector method of Hamming (10). The calculation of the 
derivatives in Eqs. 12-15 is performed in the subroutine DRVT 
after evaluating G in the subroutine CALCG. 

The procedure of subroutine CALCG is as follows. The first 
step involves the calculation of (H+)-h from the fourth-power poly- 
nominal Eq. 16 by the Newton-Raphson method. Then (R)+ 
(RH+)-A, (B-)-h, and (HB)-A are obtained from Eqs. 1,2, and 4, re- 
spectively. The next step is the evaluation of (Hc)-o from Eq. 17. 
In turn, (B-)--o, (HB)-0, (RH+)-o and (R)-o are found, using Eqs. 4, 
7, and 18 and finally G by Eq. 6. 

REFERENCES 

(1) A. H. Goldberg, W. I. Higuchi, N. F. H. Ho, and G. Zografi, 

(2) A. Ghanem, W. I. Higuchi, and A. P. Simonelli, ibid., 58, 

(3) S. A. Howard, A. Suzuki, M. A. Farvar, and W. I. Higuchi, 

(4) R. G. Stehle and W. I. Higuchi, J.  Phurm. Sci., 56,1367( 1967). 
( 5 )  A. Suzuki, W. I. Higuchi, and N. F. H. Ho, ibid., 59, 

(6) T. Koizumi, T. Arita, and K. Kakemi, Chem. Pharm. Bull., 

(7) Zbid., 12, 421(1964). 
(8) J. Crank, “Mathematics of Diffusion,” Oxford, New York, 

(9) P. Shore, B. Brodie, and C. Hogben, J. Pharmacol. Exp. 

(10) A. Ralston and H. Wilf, “Mathematical Methods for Digital 

J. Pharm. Sci., 56, 1432(1967). 

165( 1969). 

to  be published. 

651( 1970). 

12, 413(1964). 

N. Y., 1956. 

Ther., 119, 361(1957). 

Computers,” Wiley, New York, N. Y., 1960. 

ACKNOWLEDGMENTS AND ADDRESSES 

Received July 22, 1969, from the College ofPharmacy, University 

Accepted for publication December 16, 1969. 
Presented to the Basic Pharmaceutics Section, APHA Academy 

of Michigan, Ann Arbor, MI 48104 

of Pharmaceutical Sciences, Montreal meeting, May 1969. 

Theoretical Model Studies of Drug Absorption 
and Transport in the Gastrointestinal Tract I1 

AKIRA SUZUKI*, W. I. HIGUCHI, and N. F. H. HO 

Abstract 0 Multicompartment diffusional models for the absorption 
of neutral, acidic, basic, and amphoteric drugs were investigated. 
The general model consisted of a bulk aqueous phase, an aqueous 
diffusion layer, n-compartments of homogeneous and heterogeneous 
phases, and a perfect sink. With the mathematical techniques 
reported previously, equations were derived in general terms 
for the nonsteady- and steady-state periods. Utilizing the steady- 
state diffusion efficiency function of the barrier systems, the first- 
order rate constants for various examples of two- and three-com- 
partment models were obtained from the general model and some 
computations were given. Various sets of in situ experimental rat 
data have been analyzed by means of the different models. These 

include the intestinal, gastric, and rectal absorption of sulfon- 
amides and barbit uric acid derivatives. Self-consistent dimensional 
constants and diffusion coefficients were arrived at and the correla- 
tions obtained with the models have been found to be generally 
satisfactory. 

Keyphrases 0 Theoretical models-drug absorption, transport, 
gastrointestinal tract 0 Drug absorption, transport, gastrointestinal 
tract-theoretical models, equations derived 0 Kineticsdrug 
absorption, transport 0 Sulfonamides-absorption, diffusion 
data, rats 0 Barbituric acid derivatives-absorption, diffusion 
data, rats 

In a previous paper the diffusion of basic and acidic 
drugs across an aqueous diffusion layer and a lipid 
compartment in a homogeneous two-phase model was 
presented (1). It provided a mathematical technique 
whereby more complicated models can be handled. A 

function was also derived which was found useful in 
analyzing the diffusion rate with respect to the parti- 
tion coefficient, surface and bulk pH, dissociatiQn con- 
stant, diffusion coefficients, and diffusion layer thick- 
ness. 

Vol. 59, No. 5, May I970 0 651 


